JOURNAL OF COMPUTATIONAL PHYSICS 111, 15-23 {1994)

Calculating Complex Interactions in Molecular Dynamics Simulations
Employing Lagrangian Particle Tracking Schemes

J. H. DuNN AND S. G. LAMBRAKOS

Naval Research Laboratory, Washington, DC 20375-5000

Received May 21, 1991; revised March 8, 1993

In this report, we describe some general features of Lagrangian
particle tracking and the method of table lock-up that are important for
calculating many different types of interactions of arbitrary complexity
in large molecular dynamics simulations. Based on our experience
using these approaches and state-of-the-art of computer technology,
we state formally those propesties of Lagrangian wacking and table
look-up that are important to the design of optimal programming
structures. We examine the relationship between Lagrangian indexing
and list indexing of data and how this influences the complexity of
programming structures for effecting vector operations. Included in this
repart are criteria for the efficient use of Lagrangian particle tracking
schemes in molecular dynamics simulations. © 1994 Academic Press, inc.

I. INTRODUCTION

In molecular dynamics simulations of systems consisting
of many diflerent types of complex molecules, many dif-
ferent types of potential energy functions must be evaluated
at each time step. In such simulations, the evalvation of the
total force on an individual particle may require the evalua-
tion of a wide range of expressions which consist of terms
containing fractional powers or transcendental functions.
In addition, for a given pair of interacting particles, the
appropriate potential energy function and associated
parameters must be identified according to particle type.
In general, molecular dynamics simulations of complex
systems present three design problems: an efficient algo-
rithm for evaluating a range of complicated expressions
requiring many operations, an efficient procedure for iden-
tifying the type of interaction for any given pair of particles
in the model system, and architecture independence of
programming structures, e.g., design of programming struc-
tures which are well suited to vector or scalar architectures.
In principle, the method of table look-up represents a
general approach to addressing the first problem; however,
in practice, large numbers of particle types can result in
programming structures consisting of conditional opera-
tions that limit the efficient utilization of sequential or
paralie! architectures.

For a given method of function evaluation, e.g., table
look-up, the efficiency of any procedure for computing
potential energy or force magnitude will depend on the
cfficiency of accessing or “gathering” information con-
cerning particles which are “near” neighbors of a given
particle, e.g., a vector of positions and possibly orientations.
List indexing schemes require that a vector of pointers to
this information be explicitly computed, stored, and
reirteved from each of a particle’s near neighbors.
Lagrangian schemes employ an implicit pointer scheme
which obviates the need for computation, storage, and
retrieval of pointers to near neighbors, at the cost, however,
of computing the interactions with a greater number of
neighbors. Although the type of “gather” operations
employed in any given procedure will depend on the nature
of the computer architecture, it usually involves accessing
memory which is external to the processor computing the
value of the potential energy or force magnitude. Further,
the term vector of quantities, e.g., tndices, in no way implies
that the discussion is limited to vector architectures. Rather,
it indicates that the operation in question is a mapping from
R, the set of particles, to R”, a set of particles associated
with any given particie.

In this paper, we analyze the computational complexity
of procedures that employ Eulerian and Lagrangian particle
tracking schemes for accessing information about particles
in molecular dynamics simulations along with table
icok-up. We present a general procedure for optimizing
Lagrangian indexing of data in conjunction with table
look-up. We outline the properties of Lagrangian tracking
schemes in the context of contemporary computational
environments. Previous reports {1-3] give a detailed
analysis of many of the properties of Lagrangian particle
tracking; however, based on our experience using these
schemes as well as the current state of computer technology,
we show that some of the constraints on Lagrangian
tracking outlined in those reports are no longer essential for
effective implementation of Lagrangian tracking schemes.
Through formal definitions and conditions, we present the

0021-9991/94 $6.00

Copyright © 1994 by Academic Press, Inc,
All rights of reproduction in any form reserved.

16 DUNN AND LAMBRAKOS

necessary conditions on Lagrangian tracking for the design
of efficient programming structures in molecular dynamics
simulations. In particular, we present a criterion for
minimizing the number of superfluous operations performed
due to Lagrangian tracking.

1I. BACKGROUND

A. Eulerian Particle Tracking

An Eulerian particle tracking (EPT} scheme is any
method which uses a condition based explicitly on particle
secparation for determining the “near” neighbors of any
given particle, p, where near neighbors are defined to be
those particles whose interactions with the given particle are
non-negligible. Notable among such methods are proce-
dures for constructing neighbors or linked lists [4-6]. An
example of particle tracking based on neighbors list method
is the construction of atom-site maps. Beeler [7, 8]
describes the use of atom site maps for molecular dynamics
modelling of bee, fee, and hep crystal structures. In this
section, we present the aspects of EPT which contribute
to its computational complexity, examine programming
structures for its implementation and derive expressions
for its computational cost with respect to computing
particle—particle interactions.

Before proceeding to the analysis of the computational
complexity of Eulerian particle tracking, we define com-
putational cost, C 4, of an algorithm, A4, to be the sum of the
computational costs, ¢;, of each of the N, tasks associated
with it. Further, the cost of each task is simply the product
of the order of its computational complexity, i.e., the order
of the leading term in the polynomial expression for opera-
tion count, of the task, o;, and the amount of computer time
required for each operation, s,. Therefore,

A
C.= 3 s0, (1)

i=1

In the case of molecular dynamics simulations employing
EPT, the computation of particle-particle interactions
requires four distinct computational tasks: construction
of the neighbor’s list, accessing positions of neighbors,
evaluation of the force magnitude or potential energy and
updating the partial forces or potential energies of the
neighbors as well as the particle of interest, p. In general, the
first task will be performed at most every few time steps. The
remaining three tasks must be performed every time step for
each particle.

Before examining each computational task explicitly, we
outline the general structure of the molecular dynamics
simulation, specifically the evaluation of particle-particle
interactions. Although this treatment does not necessarily
represent an analysis of optimal task partitioning for

FIG. 1. Close neighbors to particle IPAR for IPAR = 11.
Eulerian tracking, these aspects will contribute to the com-
plexity, and hence the cost, of any specific programming
structures corresponding to optimal task partitioning for
schemes employing EPT.

For simplicity, we will consider only a bounded region of
two-dimensional space. The discussion which follows is
identical for three dimensions. Consider a region, S, which
contains 36 particles and represents part of the xy-plane (see
Fig. 1). There exists a subregion S, that contains all par-
ticles considered close neighbors of the particle labeled 11 in
Fig. 1. In Eulerian tracking schemes, the neighbors of a
given particle are defined as those particles having a spatial
separation less than some specified distance, R, in Fig 1.
Given this condition, one constructs a list of neighbors
for each particle in the system. One may then access
information concerning any of the close neighbors of the
particle of interest.

Figure 2 depicts the EPT mapping of S, onto computer
memory along with the mapping of S, represented by the

rl 2 3 4 5 6

D] 12

13 [1415|1617 18

19120 121 | 22|23 |24

25 | 26 | 27 | 28 | 29 | 30

B

31 1 32)33 | 34 | 35| 36

1,

FIG. 2. Close neighbors of IPAR in computer memeory when Eulerian
tracking is employed.

CALCULATING COMPLEX INTERACTIONS 17

Determine Neighbors

I, = IPAR
I, = NABERS(INBR,IPAR)

1
Compute Interparticle Seperation

RSQ; = (xll'xlz)z

1
Determine Particle Types
T] = T[l
Tz = TIZ

Y
Evaluate Force
F, = FORCE(RSQ,, T}, T;,)

Update Force Arrays
F[l = F[l + ?
F.=F,-F

FLOWCHART 1.
Eulerian tracking.

General programming structure associated with

shaded boxes. A programming structure for the evaluation
of particle—particle interactions is outlined in flowchart 1.
The variable labeled IPAR is the particle identifier (PID) of
particle p and corresponds to particie 11 in Fig. 1 and Fig. 2.
The array labeled NABERS holds the list of the PIDs of the
close neighbors of all system particles indexed by the PID of
each particle. Although our example depicts the neighbor’s
list method, the complexity of the method is the same for
gither linked list or neighbor’s list methods. The variable
INBR varies from one to the number of particles less one
within the grey shaded region in Fig. 1.

We may now analyze the computational complexity of
each of the four tasks required for the implementation of the
programming structure outlined above and how they relate
to the computational cost of computing particle-particle
interactions in the context of EPT.

The first task is the construction of a list of PIDs corre-
sponding to the near neighbors of the particle of interest.
With respect to computational complexity, the construction
of either neighbor’s lists or linked lists is equivalent to
performing a sort. The complexity of these algorithms, and
therefore task 1 is

o,=N_log N, 2)
where log refers to the base 2 logarithm and &, is the num-
ber of particles in the system. Second, the positions of the

N.{p) close neighbors of each particle p must be accessed.
Clearly, the complexity of this task is

NF
o,= 3 N.Jp) (3)

The compilexity of the third and fourth computational tasks
is the same as that of the second. Thus the computational
cost of particle-particle interaction evaluation is

3 Ny

Cepr=o5; N, log N, +a, Y 5 Z N.(ph (4)
i=2 p=1

where s, is the time required to generate one neighbor’s list
element, s, is the time to gather the particle positions and
update the partial forces, s, is the time to evaluate force
magnitude or potential energy. The [actors o, and «, are the
number of times a task must be performed during a simula-
tion divided by the number of time steps in the simulation
resulting in the expected number of tasks performed per
step. In general, «, will be one; however, a, depends on the
type of physical system being modelled. For solids, o, will
tend to be much smailer than one, but in the case of liquids
it may be quite close to one.

B. Lagrangian Particle Tracking

Based on the following definitions, we present the aspects
of Lagrangian particle tracking (LPT) which contribute to
its computational complexity, examine programming
structures for its implementation and derive expressions
for its computational cost with respect to computing
particle—particie interactions.

DeriNiTION 1. Given a system of N particles in a
bounded region of three-dimensional space, a Lagrangian
tracking scheme is one which establishes a one-to-cne
mapping between N spatial coordinates (X, Y,, Z,) and
N Lagrangian coordinates (i,/, k) (where i=1,.., N,

j=1.,N, k=1, N and N=N N,N.), subject to the

ordering conditions

XX a
.Y

j F+ 4

(5)
Zk = Zk + dicr

where A7, Aj, and Ak are fixed integral differences that are

greater than or equal to one.

DermNITION 2. A Lagrangian attribute is a particle
attribute which is identified only by its Lagrangian coor-
dinates (i, j, k}.

The conditions given by Eg. (1) permit one to adopt an
implicit criterion based on the relative separation of par-

18 DUNN AND LAMBRAKOS

ticles for determining the neighbors of any given particle in
a bounded region of space. In Lagrangian tracking schemes,
the neighbors of a given particle are defined as those
particles for which the difference of their Lagrangian coor-
dinates is less than some specified difference. This criterion
is not a sufficient condition for tracking near neighbors, but
is a sufficient condition for tracking “closest” neighbors. In
particular, this criterion is sufficient for tracking the set of
“first closest” neighbors, the set of “second closest”
neighbors, etc. LPT tracks a set of neighbors of a given par-
ticle of which a proper subset contains all near neighbors.
Any operations used to determine this subset would be
associated with Eulerian tracking, Thus, in Lagrangian
schemes, one always tracks a set of particles that is™larger
than the set of neighbors that are close.

In the case of molecular dynamics simulations employing
LPT, the process of computing particle-particle inter-
actions 1s composed of three distinct computational tasks:
sorting the Lagrangian coordinate system subject to the
conditions in (1), cvaluating the force magnitude or
potential energy, and updating the partial forces or potential
energies of the neighbors as well as the particle of interest,
p. In general, the first task will be performed at most every
few time steps. The remaining two tasks must be performed
every time step for each particle.

Before examining each task in detail, we outline the
general structure of the molecular dynamics simulation.
Again, we consider the two-dimensional bounded region in
Fig. 1. In LPT schemes, the neighbors of a particle are
defined to be those particles whose separation, in each
Lagrangian coordinate, is less than some cutoff, ¥, (p).
Note that the Lagrangian cutoff is defined in terms of a
vector of Lagrangian coordinates rather than a scalar
magnitude. This simplifies programming structures used in
this technique. Thus, the number of particies interacting
with particle pis (N, (p)+ 1)~ 1.

Figure 3 represents the mapping of the regions $, and S,
in Fig. 1, onto computer memory. in a Lagrangian scheme,
the coordinates of a particle’s closest neighbors are stored in
contiguous memory locations. The programming structures
necessary to implement this scheme are outlined in
Flowchart 2. Note that Flowchart 2 represents a three-
dimensional implementation of Lagrangian tracking in
a molecular dynamics simutation. In Fig 3, the dark
border around the closest neighbors of particle 11, whose
Lagrangian coordinates are ijk in Flowchart 2, indicates the
extent of the Lagrangian “neighbors template.” The integer
pairs in each location represent the Lagrangian coordinates
of that particle. The template in Fig. 3, corresponds to the
range of variables 72, 2, and k2 in Ilowchart2. For
example, {2 would vary from / to i + 2. Note also that this
template can be characterized by a single number which is
the analogue of a “cutoff distance” in Lagrangian coor-
dinates and is two in our example. Using a template to index

2 1127113] 8 |18

6.1} 6.2 6,3) 6:4)) (6.6)

33 {3 26 [191 14 | 34

3.1 8.2 5.3y (5.4} (5.3) (5.6}

28 | 321 4 | 21 7 | 20

“n “2) (3) 44) (45) (4.6)
15 5122 6 17125
aay 3.0 an 34 (35 3.6
PR
31 123129135 | 164 9
(4R)] (1,2) (13 (L4} (L5 (1.8

FIG. 3. Close neighbors of IPAR in computer
Lagrangian tracking is employed.

memory when

eliminates the need for a linked or neighbors list and,
accordingly, reduces the computational complexity of the
algorithm.

We now analyze the computational complexity of each of
the three tasks required for the implementation of the
programming structure outlined above and their effect on
the computational cost of computing particle-particle
interactions in the context of LPT.

The first task is the sorting of the Lagrangian coordinates
subject to (5). The complexity of this algorithm is

0,=N,logN,. (6)
The complexity of the second and third computational tasks
is

o= Y [N+ 1) 1]

p=1

(7)

Compute Interparticle Seperation
RSQ: = (X X2 p)

¥
Determine Particle Types

Ti=Ty

T;=Ti 2k2

Y

Evaluate Force
F, = FORCE(RSQ;, Ty, Tiz 2 12)

Y

Update Force Arrays
Fll = F]I + ?
F[1 = Flz - ?

FLOWCHART 2. General programming structure associated with
Lagrangian tracking.

CALCULATING COMPLEX INTERACTIONS 19

For the case where N, (p) is a constant,

0;=N,[(N(p)+1)P—1]. (8)

Thus the computational cost of particle-particie interaction
evaluation is

Crpr=o5sN, log N, 4 a,(5: 4+ 5,) N [(N, (p)+ 1)’ —11,
9)

where 55 is the time required to sort one element and s, is the
time required to gather particle positions and update the
partial forces. Again, factors «, and «, are the number of
times a task must be performed during a simulation divided
by the number of time steps in the simulation resulting in
the expected number of tasks performed per step. Unlike the
Eulerian case, it can be shown [9] that inflow/outflow
boundary conditions, even in fluid volume elements
subjected to a global shearing force, have little effect on the
value of «,. This is due to the inherent structure of the
mapping of Lagrangian coordinates onto computer
memory and is discussed below. Note that the cost of
accessing the positions of close neighbors is not included
since the information in the EPT neighbors list (NABERS
in Flowchart 1) is inherent in the LPT indices (i2, j2, and
k2 in Flowchart 2).

C. Table Look-up for Function Evaluation

Function evaluation via table look-up is a well estab-
lished method in many different areas of computational
physics where the weighting of a grid point or the evaluation
of a matrix element requires many operations. Notable
among these methods is the use of table look-up in conjunc-
tion with fast Fourier transforms [10], for the calculation
of equation-of-state parameters in computational fluid
dynamics models [11] and for the calculation of complex
interactions in molecular dynamics simulations [12, 13].
Table look-up procedures usually consist of two stages. In
the initialization stage, the function is evaluated at a set of
values of the independent variable called tie points and the
tables necessary for interpolation are generated. This stage
does not necessarily entail the evaluation of complex
analytic functions. For some applications, e.g., equation-
of-state calculations, the original representation may be
empirical data in a table. The next stage, which is the one
used repeatedly, consists of a procedure for efficiently
accessing specific values in the tables and computing the
interpolant. For a given interpolant, the computational cost
of table look-up methods is independent of the complexity
of the original function.

As the potential energy functions used become more
complicated or the number of particle types incteases, the
method of table look-up combined with interpolation pro-

cedures can be used to avoid the increased computational
cost of the direct evaluation of potential energies and forces.
Several table look-up procedures for using table look-up in
molecular dynamics have been developed [12, 13]. The
problem of the accuracy of interpolants has also been
addressed and has resulted in a variety of interpolation
schemes [14]. For molecular dynamics simulations in
which particle-particle interactions are evaluated using
table look-up, the analysis of the computational cost,
Eq. (1), 1s independent of the interaction types and the num-
ber of particie types being modelled. Rather, it depends on
the type of interpolation scheme employed. One common
scheme is piece-wise polynomial interpolation. In this case,
the computational cost of function evaluation, s, increases
linearly with the order of the polynomial, however, the
maximum error in the interpolant, ¢, is proportional
to the magnitude of the spacing between the tie points, 4x
raised to the power m [147]. Thus, the cost of function
evaluation by an interpolant of order m is

s3(m) & ms;(1) (10)

Compute Interpolation Variable

RSQ; = (XpeXin p ol
IND = INT(RS(Q))

{

Determine Particle Types
Ti = T
Ty=Tizjpe

!

Gather Coefficients

Y; = F(T|,T,,IND)
Yi+1 = ﬁ(Tl,Tz,IND‘l'l)

Compute Knot Points
X; = FLOAT(IND) * Ax
Xin =X+ Ax

Evaluate Force
Fi=(a0)" (RSQi* (Y1 - Y)
+ Y X1 - Y'n—]*xi)

Y

Update Force Arrays
Fi = Fy+ F _
Fopu=Fape-F

FLOWCHART 3. General programming structure associated with
table look-up and Lagrangian tracking,

20 " DUNN AND LAMBRAKOS

while

Emax & |4X]™. (11)
The number of coefficients required for a given ¢, and set
of polynomials, e.g., the Hermite polynomials, scales
linearly with / while the number of tie points, N, (m), is

N_(m} o 1/ enman.

For example, given £,,,=107% the computational cost
of linear interpolation using Hermite polynomials is
approximately one-third that of using cubic Hermite poly-
nomials while over 3000 tirnes the number of coefficients are
required. The general form of function evaluation by linear
interpolation is depicted in Flowchart 3.

(12)

III. CRITERIA FOR THE EFFICIENT USE OF
LAGRANGIAN PARTICLE TRACKING

For a given method of function evaluation, the computa-
tional cost of molecular dynamics simulations employing
LPT depends on the method of implementation. To be
specific, the two factors which negatively impact perfor-
mance are the number of extraneous function evaluations
and sorts of the Lagrangian coordinate system performed.
In this section, we present criteria for minimizing both,

A. Minimizing Unnecessary Function Evaluations in LPT

It follows from Definition 1 that any algorithm used in
conjunction with Lagrangian tracking must satisfy the
following conditions:

Condition 1. It is never necessary Lo access memory in
order to determine a particles neighbors.

In other words, Lagrangian tracking uses direct addres-
sing of particle attributes, rather than indirect addressing as
do neighbors-list algorithms. This ensures that the number
of memory accesses required to, and hence computational
cost of, assembling the information necessary for a given
calculation is a minimum. With respect to accessing infor-
mation, Lagrangian tracking is optimai for both vector and
scalar architectures; however, in order to use Lagrangian
tracking efficiently it is necessary to minimize the number of
particles whose interactions with the particle of interest are
negligible. The following three conditions are necessary for
developing general criteria for this minimization:

Condition 2. The interactions between particles are
local in pature and are negligible at interparticle separations
exceeding some finite distance.

In the case of EPT, this separation corresponds to R,. In
order to define the corresponding quantity for LPT, the
following conditions are necessary.

Condition 3.
teristic size.

Each particle in the system has a charac-

That is, there exists some minimum interparticle separa-
tion which corresponds to the distance at which two
particies will invariably deflect.

Condition 4. Particles may enter or leave the model
system only through the boundaries, ie. particles are
neither created or destroyed.

Note that Condition 4 in no way limits the use of LPT to
simulations in which molecules undergo chemicai reactions.
Rather, it requires that, if such dissociation is to be
modeiled, the constituents in the reaction, atoms or groups
of atoms, be treated as separate entities.

Tt follows from Condition 2 that there exists some maxi-
mum separation, R, at which the influence of neighboring
particles may be ignored. It follows from Condition 3 that
there exists an average number density, p,, of system par-
ticles which represents the average number of particles in a
unit volume. Given p,, we may define a characteristic
volume, V(p,}=p, ', which may be identified with average
size of a unit Lagrangian cell. It follows from Condition 2
that

NUlp) > 5 = 1. (13)

(p.'l)lf‘3 N

That is, the Lagrangian cutofl must be at least as large as the
number of unit cell lengths corresponding to R,.

It follows from these conditions that Lagrangian tracking
is well posed for many different types of molecular dynamics
calculations [1, 9]; i.c., many molecular dynamics simula-
tions satisfy the above conditions. The task, then, is
to appropriately choose N, (p) such that (13) is satisfied
while N, (p), the number of superfluous operations, is
minimized. This corresponds to the optima of

mil'l T—l J‘OT Nnull(p) dr

s.L.

-t drsemax-:

0

ie {NLip)} je{r€ R}

(14)

where ¢, is the largest acceptable error in the force or
potential energy evaluation due to the Eulerian cutoff dis-
tance and f{p, i) is the force on particle p due to particle 7.
It follows from the Conditions 3 and 4 that the spatial
separation of particies is a continuous function of time;
therefore, the time average rather than the instantecus
values may be used.

CALCULATING COMPLEX INTERACTIONS 21

Clearly, the optimization problem (14) is intractable,
given the standard methods of optimization. It serves,
rather, as a formal problem statement from which criteria
for minimizing extraneous function evaluations based on
system type may be established. We will consider the
optimization of (14} in the case of a specific type of
molecular dynamics simulation and then we comment on
the case of general molecular dynamics simulations.

In the case of a molecular dynamics simulation of a fluid
volume element, equating V(p,)'” with the average radial
interparticle separation results in an overestimate of the
actual separation. If we consider the neighbors of the par-
ticle of interest to be arranged in “shells” around it, e.g., the
shell of first closest neighbors contains 26 particles, then in
the case of the nth, as » approaches infinity, the over-
estimate of the average separation approaches 2! Thus,
using

R,

Wp.)'"? ()
is generally appropriate in this case. In the general case, the
choice of ¥,(p) is more difficult. For the general equi-
librium molecular dynamic simulation, the kinetic energy
may be monitored and, if large fluctuations occur, N,(p)
may be increased by one. In the general non-equilibrium
case, this is a poor criterion. If the model system is a crystal,
where phase transitions occur at specific temperatures,
N, (p) may be estimated from the unit cell for a given con-
figuration, e.g., fcc, and adjusted as a function of system
temperature. In the absence of any specific information con-
cerning the model system, it is best to start with a conser-
vative estimate of N, (p) and perform identical simulations
using various values. If the results of the simulations, i.e., the
final particle positions and velocities, are identical to within
the tolerance of the machine, then the lower value of N, (p)
is acceptable.

Finally, we may reduce the number of extraneous func-
tion evaluations by adjusting the Lagrangian cutoff distance
to take into account the spherical nature of the neighbors
shells. In effect, rather than circumscribing the sphere with
a cube, ie., allowing the Lagrangian coordinates i/, /, and k&
to vary from one to N, (p), we restrict their range of the
coordinates with the following constraint:

Nu(p)=

(F+j+k) <N (p) (16)
This censtraint reduces the number of function evaluations
from N (p)* to n/6 N { p)*. For properly chosen N, (p), this
number will be very close to the number of particles tracked
in an EPT scheme.

B. Minimizing the Number of Sorts Required

In previous reports, many of the properties of what is
defined in this paper as Lagrangian tracking are referred to

as properties of particle tracking using a “monotonic
Lagrangian grid” [1, 3] or a “monotonic logical grid” [2],
ie., MLG. We have chosen the more general designation,
Lagrangian tracking, since the designation MLG implies
certain limitations on the flexibility of these types of implicit
pointer schemes. A strictly monotonic Lagrangian grid
would correspond to the special case where the fixed
integral difference defined in Eq. (5) have a valug of one, ie.,
di=A4j= 4k =1. This condition is not a general require-
ment for maintaining the implicit pointers that are the basis
of Lagrangian particle tracking. Lagrangian tracking estab-
lishes a correspondence between the “proximity” of particle
locations in space and locations in computer memory, ie.,
their Lagrangian coordinates. Establishing an exact corre-
spondence between the relative values of spatial coordinates
and locations in computer memory as is implied by a strict
monotonicity condition s not a necessary condition
for effecting Lagrangian tracking. The MLG requires
monotonicity conditions solely for effecting this proximity
correspondence; however, Lagrangian tracking schemes
can function with a significant degree of local non-
monotonicity in spatial coordinates and maintain substan-
tial correspondence between the proximity of spatial and
memory locations. For example, if the Lagrangian coor-
dinates of particles 7 and 20 were interchanged (see Fig. 3),
the Lagrangian grid would no longer be monotonic with
respect to the x coordinate (see Fig. 1}; however, both par-
ticles are still within the Lagrangian cutoff distance and the
calculation of interparticle interactions remains unchanged.
Therefore, satisfying monotonicity requirements, or any
ordering requirement on spatial coordinates at every
timestep, is not a neccessary condition for Lagrangian
tracking. It is, however, necessary to maintain a high degree
of correspondence between the proximity of spatial and
Lagrangian coordinates. Finally, since it is not necessary to
apply ordering operations at every timestep for the purpose
of constructing the implicit pointers used with Lagrangian
tracking, Lagrangian tracking algorithms afford more
flexibility with rtespect to increasing the computational
efficiency of tracking particles in an evolving system.

To order the Lagrangian coordinate system, we introduce
the concept of swapping neighboring particles in a par-
ticular direction. For example, an x swap would be one in
which the information concerning particles at Lagrangian
coordinates (i, j, k) and (i+ 1, j, k) is exchanged. Since this
is a lock-step procedure, ie., each pair of particles is
examined individually and exchanged if necessary, the
actual number of swaps depends on the ordering of the
system. In general, the order of the coordinate system is
maintained at a fairly high degree; therefore, the number of
swaps will be small compared to the number of particles in
the system, N . In specific, if we define v, to be the frequency
with which the Lagrangian coordinate system is sorted and
#s(v,) to be the average number of swaps per timestep for a

22 DUNN AND LAMBRAKOS

given v,, it is generaily true the g, is independent of v,. This
is due to the inherent ordering of Lagrangian coordinates, If
a Lagrangian coordinate sysiem becomes disordered in one
dimension, the ordering in the other two dimensions may
or may not be effected; therefore, the compuiational
complexity of the swapping of Lagrangian coordinates is
o, (LPT)~max(N., N,, N.) (17)
which is significantly less than the N, log ¥, necessary with
EPT. Further, since each compariscn is done in a lock-step
pair-wise fashion, each sort requires only 3¥, comparisons
and no computation as opposed to N, log N, comparisons

and computations of the interparticle separation in the case
of EPT.

IV. THE SIGNIFICANCE OF POINTERS AS
LAGRANGIAN ATTRIBUTES

In the previous section, we presented the general struc-
ture of Lagrangian tracking algorithms and showed that
they were highly efficient for particle tracking in simulations
where “non-bonded” interactions are being computed.
Non-bonded interactions are interactions where interacting
particles are identified by the proximity of the particles.
Thus, non-bonded interactions are independent of a par-
ticles identity. if not particle type; however, in simulations of
some physical systems, there exist interactions where the
knowiedge of a particie’s identity is necessary. For example,
time dependent interactions, such as covalent interactions,
or systems of linked particles, such as long chain molecules,
require that the interacting particles be specified uniquely.
These interactions represent “bonded” interactions since
one particle is associated uniguely with another, In the case
of bonded interactions, there is no increase in the efficiency
of accessing this type of information when Lagrangian
tracking is employed; however, the efficiency of the
programming structures necessary for these interactions is
not degraded when they are implemented in conjunction
with Lagrangian tracking. This is because there is no need
to impose an additional global data structure on the mode!l
system, In other words, the programming structures for
bonded interactions may be embedded in a Lagrangian
tracking scheme.

The programming structures for bonded interactions are
inherently based on neighbors or linked list indexing. Since
the identities of the particles interacting with a given particle
through bonded interactions are unique, each particle must
have a list of particles which are bound or linked to it. This
corresponds to a list of pointers to these particles; however,
since there is a one-to-one correspondence between the set
of particles in the system and the set of lists, each list may
be uniquely accessed via a particle’s Lagrangian coor-
dinates. It follows that a list of pointers is simply another

Lagrangian attribute and, as it is accessed with a unique
PID, does not require swapping. In the case of a static list,
1t is uniquely identified by a pointer, 1.e., the PID, which is
swapped. Further, the generation of dynamic lists, e.g., lists
of hydrogen bonded neighbors, may also be treated in this
manner; therefore, their generation will not degrade the
performance of LPT.

In the preceeding sections, we have discussed both list.
and Lagrangian tracking algorithms. We have indicated
that Lagrangian tracking constitutes a highly efficient
programming structure for non-bonded interactions. This
type of interaction accounts for the major portion of the
computational cost of force evaluation in molecular
dynamics simulations; however, there are interactions
where list indexing algorithms are necessary in order to
uniquely specify the identity of the interacting particles. The
programming structures necessary for this type of indexing
can be embedded into Lagrangian tracking schemes. There-
fore, it is the task of the researcher designing the code to
integrate the proper structures into an overall scheme which
is both efficient and fquictional.

V. COMPUTATIONAL RESULTS

In this section, we outline the computational environ-
ment of our test stimulations and present their results, We
first present general results of test codes based on the
programming structures outlined in the flowcharts. Next,
we present the results of a specific molecular dynamics
simulation for the purpose of illustrating the efficiency and
flexibility of LPT.

Table I lists the computational cost in microseconds of
each of the tasks required for LPT and EPT. Both the LPT
and EPT codes were written in ANSI standard FORTRAN.
For results produced on Cray machines, the codes were
compiled and linked using the cf77 version 5.0 compiling
system. The default optimization (vectorization) was
enabled. In the case of the SGI machine, the codes were
compiled and linked using the {77 version 3.10 compiling
systemn. Safe microcode (level 2) optimization was enabled.
Comparing the computational costs of tasks which occur
with the same frequency, the time to perform an EPT sort,
$,, s approximately half that to perform an LPT swap, ss;

TABLE 1

Computational Costs, 5,, in Microseconds

Machine type 5 53 £ 54 55
Cray YMP 581 240 0.50 077 19

Cray YMP-EL 271 110 1.74 4.04 413
Cray XMP 7.51 2.58 0.80 0.95 16.4
SGI R4000 17.1 1.60 142 1.05 9.04

CALCULATING COMPLEX INTERACTIONS 23

TABLE 11
vy vs v,

v, ulv,)
0.05 7.47
0.1 775
02 7.62
1.0 7.49

however, the time to access particle positions and update
partial forces in the EPT case, s, is twice that of the LPT
case, §,4. Since the number of sorts per timestep is much less
than the number of particle-particle interaction evaluations
per timestep, LPT is almost twice as fast as EPT in the
general case,

Table 11 shows the average number of swaps per time step
as a function of the frequency of the re-ordering of the
Lagrangian coordinate system for a specific molecular
dynamics simulation, 1000 Ar atoms in a box with
inflow/outflow boundary conditions at 120K. Clearly, u, is
independent of v,. It should also be noted that the final
system configuration was unaffected by the chaice of parti-
tioning and may be optimized for a particular computer
architecture, e.g., a very small value could be selected in the
case of message passing distributed memory architectures
where communication between processors is very expensive,
It should also be noted that the number of swaps per step is
of order N %, Thus the number of swaps per step scales as
the cube root of the system size. In the same set of simula-
tions, the number of particles tracked by EPT was com-
puted and compared to the number tracked by LPT. For a
given R, using (15) resulted in the same number of particles
being tracked by both methods. Thus, for this class of
simulation, LPT is as efficient as EPT with respect to the
number of particies tracked.

YI. CONCLUSIONS

In this report, we have described some general features of
l.agrangian tracking and table look-up and stated for-
mally those properties which are important to the design
of cfficient programming structures. Further, we have
provided a formal definition of Lagrangian tracking and the
necessary conditions for efficient programming structure
design. We have examined list indexing and shown that, in

simulations where list indexing is required due to the inclu-
sion of bonded interactions, it can be incorporated into a
Lagrangian tracking scheme without either imposing a
separate global indexing scheme or effecting the efficiency of
Lagrangian tracking. Finally, we have outlined program-
ming structures for Lagrangian tracking, Eulerian tracking
and table look-up in the form of flowcharts. These
flowcharts represent efficient programming structures for
Lagrangian tracking and table look-up in the context of
vector computer architectures.

In the general case, we have shown that EPT requires
almost twice the execution time of LPT. We have also
shown that LPT is highly flexible with respect to task
partitioning and that, in a specific case, it tracked the same
number of particles as EPT.

ACKNOWLEDGMENTS

The authors extend special thanks to Gary Jones (DARPA Advanced
Submarine Technology (AST) COTR for Hydrodynamics and Ship
Control)and K. J. Moore and J. V. Dugan of Cortana for their interest and
support. This work was performed under Contract MDA 972-88-C-0064.

REFERENCES

1. 5. G. Lambrakes, J. P. Boris, R. H. Guirguis, M. Page, and E. S, Oran,
J. Chem. Phys. 90, 4473 (1989).

2. L. M. Picone, S. G. Lambrakos, and J. P. Boris, SIAM J. Sci. Star.
Corripur. 11 (2), 368 {1990},

3. 8. G. Lambrakos and I. P, Boris, J. Comput. Phys. 73, 183 (1987},

4. R. W. Hockney and J. W. Eastwood, Computer Simulation Using
Particles (McGraw—Hill, New York, 1981).

5.). W. Eastwood, Computational Methods in Classical and Quantum
Physics (Advance, London, 1976).

6. J. W, Eastwood, R. W. Hockney, and D. N. Lawrence, Comput. Phys.
Commun. 19, 215 (1980).

7. L R. Beeler, Jr., Computer Simulation in Material Science (Carnes,
1988),

8. J. R. Beeler, Jr., Radiation Effects Computer Experiments (North-
Holland, Amsterdam, 1983).

9. S. G. Lambrakos, J. H. Dunn, P. G. Moore, and W. C. Sandberg,
J. Chem. Phys., in press.

10. O. Buneman, S/AM J. Sci. Stat. Comput. 7 (2), 624 (1986).

t1. P. 1. Roache, Computational Fluid Dynamics (Hermosa, Albuguergue,
NM, 1982}

12. I. A. Barker, R. A. Fisher, and R. O, Watts, Mol. Phys. 21, 657 (1971).

t3. T. A. Andrea, W. C. Swope, and H. C. Anderson, /. Chem. Phys, 79,
4576 {1983).

14. C. de Boor, A Practical Guide 1o Splines (Springer-Verlag, New York/
Berlin, 1978).

